Petrobras using Topsøe SNOX™ sulphuric acid technology for flue and sour gas treatment in the new RNEST oil refinery in Pernambuco, Brazil.

COBRAS 2013, Brazil. Rodrigo Lavich, Petrobras and Torben Christensen, Haldor Topsøe
The presentation may contain forward-looking statements about future events within the meaning of Section 27A of the Securities Act of 1933, as amended, and Section 21E of the Securities Exchange Act of 1934, as amended, that are not based on historical facts and are not assurances of future results. Such forward-looking statements merely reflect the Company’s current views and estimates of future economic circumstances, industry conditions, company performance and financial results. Such terms as "anticipate", "believe", "expect", "forecast", "intend", "plan", "project", "seek", "should", along with similar or analogous expressions, are used to identify such forward-looking statements. These predictions evidently involve risks and uncertainties, whether foreseen or not by the Company. Therefore, the future results of operations may differ from current expectations, and readers must not base their expectations exclusively on the information presented herein. We undertake no obligation to publicly update or revise any forward-looking statements, whether as a result of new information or future events or for any other reason. Figures for 2010 on are estimates or targets.

All forward-looking statements are expressly qualified in their entirety by this cautionary statement, and you should not place reliance on any forward-looking statement contained in this presentation.
Presentation - main contents

- Introduction to the SNOX™ technology / similar WSA
- The SNOX™ process for treating SO₂ gases
- The Petrobras integrated solution
- Why PETROBRAS chose a technology like SNOX™
- SNOX™ environmental performance and the Brazilian regulation
- Sulphuric acid in Petrobras
- SNOX™ contribution to the energy balance in the refinery
- Pictures from installation at site
SNOX™ technology - “the concept”

- Converts SO₂ in flue gases into commercial-grade sulphuric acid
- Reduces NOx in flue gases into harmless N₂
- No consumption of chemicals or other additives
- No production of waste products
- Simple, efficient and reliable SO₂ and NOx treatment process
- Increases power plant thermal efficiency by additional energy recovery
Why SNOX™?

More Sulphur in crude oil

Less Sulphur in refined products

What to do with the sulphurous refinery residues?

Clean the flue gas in a SNOX™ plant

Burn them to produce steam and power

Clean flue gas

Sulphuric acid

Energy recovery

Steam

Power

Other sulphurous waste streams

High SO₂ flue gas

Sulphuric acid

Clean flue gas

Energy recovery

Steam

Power
SNOX™ for combustion of petcoke and heavy residue oil in boilers

*) Troublesome compounds in conventional FGD

Combustion of petcoke or residual oil

Cleaned gas

Sulphuric acid

Dry dust

O₂
N₂
CO₂
H₂O
SO₂
SO₃*
NOₓ
VOC
C
V₂O₅*
NiO*
SNOX™ – flow diagram

Reaction:
\[\text{H}_2\text{SO}_4(\text{g}) \rightarrow \text{H}_2\text{SO}_4(\text{liq}) \]

Clean flue gas to stack

SO\textsubscript{2} < 200 \text{mg/Nm}^3
NO\textsubscript{x} < 75 \text{mg/Nm}^3
Dust < 2 \text{mg/Nm}^3

Steam turbine/generator

Steam to process plants

Cooling air blower
Cooling air

Steam turbine/generator

Steam to process plants

Flue gas
ESP

Flue gas blower

Heat exchanger

SO\textsubscript{2} converter

SO\textsubscript{2} + 0.5 \text{O}_2 \rightarrow \text{SO}_3

Ammonia or SWS gas

Heat exchanger

Clean flue gas to stack

Reaction:
\[\text{SO}_3 + \text{H}_2\text{O} \rightarrow \text{H}_2\text{SO}_4(\text{g}) \]

SO\textsubscript{2} converter

Ammonia or SWS gas

Heat exchanger

Clean flue gas to stack

Reaction:
\[\text{H}_2\text{SO}_4(\text{liq}) \rightarrow \text{H}_2\text{SO}_4(\text{g}) \]

Cooling air blower

Cooling air

Steam turbine/generator

Steam to process plants

Flue gas

ESP

Flue gas blower

Heat exchanger

Clean flue gas to stack

Reaction:
\[\text{SO}_2 + 0.5 \text{O}_2 \rightarrow \text{SO}_3 \]

SO\textsubscript{2} converter

Ammonia or SWS gas

Heat exchanger

Clean flue gas to stack

Reaction:
\[\text{NO} + \text{NH}_3 + 0.25 \text{O}_2 \rightarrow \text{N}_2 + 1.5 \text{H}_2\text{O} \]
The advantages of taking refinery waste gases (H$_2$S and SWS) to SNOX™ plant

- Reduced requirement for fuel gas
- Smaller or no Claus plant required
- Direct production of more valuable product
- No problems with high content of NH$_3$ in SWS gas
- No problems with fluctuating hydrocarbons content in SWS gas
- Direct utilization of heat from H$_2$S gas and SWS gas for HP steam generation
- Limited CO$_2$ emission as there is no gypsum formation
- Better fuel economy in boiler
SNOX™ references

- **NEFO, Aalborg, Denmark** (1991)
 Coal-fired 300 MW power plant

- **Ohio Edison, Niles, Ohio, USA** (1991)
 Coal-fired 35 MW demonstration project

- **Raffineria di Gela, Sicily, Italy** (1999)
 Petcoke-fired 300 MW steam and power plant

- **OMV Refinery, Schwechat, Austria** (2007)
 Residual oil-fired steam and power plant
 SNOX™ also treats Claus tail gas

- **Petrobras RNEST Refinery, Brazil** (2014)
 Residual oil/petcoke fired steam and power plant.
 2 SNOX™ plants also treat Claus tail gas, H₂S gas, SWS gas and other sulphur-containing waste streams

- **125 WSA plants, same as SNOX, not for power prod.**
Petrobras RNEST SNOX™ configuration

- Petcoke
- Heavy fuel oil
- SWS gas (4 units)
- H₂S gas (4 units)

BOILERS (3)

- Flue gas
- Steam
- Power

CLAUSS (2)

- Tail gas
- Elemental sulphur

SNOX™ (2)

- Superheated HP Steam
- Sulphuric acid
Petrobras RNEST SNOX™ – birds view
Petrobras RNEST SNOX™ – birds view
Why PETROBRAS chose a technology like SNOX™

- Avoid lime stone and gypsum in the refinery
 - Infrastructure, storage
 - Avoid dust and CO₂ emission
- Limited water consumption
- Handling of other sulphur waste streams
 - H₂S and SWS gas
 - Claus tail gas
- Energy efficiency
 - Recycle of hot, preheated air to the boilers
 - Production of medium pressure steam
SNOX Treatment Performance compared to Brazilian Legislation for Atmospheric Emissions

- CONAMA requirements and SNOX performance guarantees:

<table>
<thead>
<tr>
<th>CONAMA 382</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil Boilers (>70MW)</td>
<td>Ammonia Converter</td>
</tr>
<tr>
<td>100</td>
<td>-</td>
</tr>
<tr>
<td>1800</td>
<td>-</td>
</tr>
<tr>
<td>1000</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>720</td>
</tr>
<tr>
<td>-</td>
<td>98</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Sulphuric Acid Handling Facilities

- Three tanks of 7,000 m³;
- Ship Loading (70% of the acid production);
- Truck Loading Station;
- Stainless Steel Pipeline;
- Pump Station.

- Approx. 80% of total sulfur is recovered from crude oil as H_2SO_4 (700MTPD)
SNOX Contribution for Refinery Energy Saving

<table>
<thead>
<tr>
<th>Energy Balance - Utility (MWe)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Production</td>
<td></td>
</tr>
<tr>
<td>MP Steam</td>
<td>+6.7</td>
</tr>
<tr>
<td>Hot Air</td>
<td>+10.4</td>
</tr>
<tr>
<td>Consumption</td>
<td></td>
</tr>
<tr>
<td>Fuel Gas</td>
<td>-1.3</td>
</tr>
<tr>
<td>Electricity</td>
<td>-5.5</td>
</tr>
<tr>
<td>Balance</td>
<td>+10.3</td>
</tr>
</tbody>
</table>

- Positive net balance of 10.3 MWe
- 3% of fuel oil consumed by the power plant
- Contribution energy efficiency index.
Assembly and construction figures

- Piping: 698 t
- Steel Structure: 3.166 t
- Concrete: 7.204 m³
Pictures
Boilers, SNOX and Sulphur Block - Overview
Sulphur Block - Overview
Boilers - Overview
SNOX Overview
SNOX – ESP front view
SNOX – ESP side view
SNOX – Gas/Gas H.Ex.
SNOX - Reactor (base)
Combustor 2 and Structure for Steam System
SNOX - WSA Condenser
SNOX - Stack (external wall)
SNOX – Stack View – Plume Directions
Questions

- Thank you for your attention.

- Any questions?